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Abstract. Automated pathology image diagnosis is one of the most crucial re-
search in the computer-aided medical field, and many studies on the recognition
of various cancers are currently actively conducted. However, neuroblastoma, the
most common extracranial solid tumor of childhood, has not got enough atten-
tion in the computer-aided diagnosis research. Accurate diagnosis of this can-
cer requires professional pathologists with sufficient experience, which makes
lack of experts lead to misdiagnosis. In this paper, we apply multi-view and
single-view maximum entropy discrimination, with traditional image representa-
tions and deep neural network representations respectively. The diagnosis is per-
formed in three neuroblastoma subtypes, undifferentiated subtype (UD), poorly
differentiated subtype (PD), differentiating subtype (D), and the normal type un-
neoplasm tissues (UN). The best classification performance (94.25%), which far
exceeds the diagnosis accuracy (56.5%) of a senior resident in the corresponding
field, demonstrates the potential of neural network representations in analyzing
microscopic pathology images of neuroblastoma tumors.

Keywords: Compter-aided diagnosis · Pathology image · Multi-view learning ·
Deep learning · Maximum entropy discrimination.

1 Introduction

Peripheral neuroblastic tumors (pNTs) are a group of embryonal tumors arising from
primitive sympathetic ganglia and containing variably differentiated neural elements
and variable amounts of Schwannian stromal cells. They commonly affect children and
are the most frequently extracranial solid tumors in childhood. There is one case in
every 7000 live children, accounting for 8 ∼ 10% of all childhood cancers [23]. The
treatment and management of pNTs depend on the pathological diagnosis as well as
the disease stage and some molecular information. The accurate pathological diagno-
sis plays the most important role in the whole treatment plan of patients. At this stage,
the international neuroblastoma pathology classification (INPC) is recommended by
the World Health Organization (WHO) for pNTs morphological categorization [18].
Based on morphologic criteria, mainly the differentiation of the neural elements and
the variable amounts of Schwannian stromal cells, pNTs are classified into four basic
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morphological categories (shown in Fig. 1): 1) neuroblastoma (NB); 2) ganglioneurob-
lastoma, intermixed (GNBi); 3) ganglioneuroma (GN); and 4) ganglioneuroblastoma,
nodular (GNBn).

The tumor usually varies from one microscopic field to another in the same tumor or
from one tumor to another. Due to lack of pathologists especially pediatric pathologists,
and the rise of patients in China, pathologists nowadays have to go over a large number
of slides every day. Thus, it is not surprising that even the same pathologist would
give different diagnoses for the same case, just because the slides were too much to
examine. For each slide, the pathologists pick up several fields to observe, making the
final decision about the entire slide based on these sampled regions. It was reported that
there is a 20% discrepancy between central and institutional reviewers [24] because of
experience, subjectivity and so on. Hence, it is necessary to find some ways to help the
pathologist alleviate this time-consuming, experience-needed and non-objective work.

In all the cancer categories in pNTs, NB is the most common tumor type, composed
of neoplastic neuroblasts in various differentiations with no or limited Schwannian stro-
mal cells. By definition, the proportion of tumor tissues with Schwannian stromal cells
should not exceed 50%. According to the INPC, NB can be further classified into three
subtypes: undifferentiated (UD), poorly differentiated (PD), and differentiating (D). In
this paper, we focus on the above three subtypes of the NB category as well as the
un-neoplasm type (UN) which indicates the areas with no tumor cells, such as fibrous
adipose tissue, blood vessels.

pNTs

GNBi

NB

UD

PD

D

GNBn

GN

Fig. 1. The morphological categorization of pNTs

Different from regular natural images, microscopic tissue images have many unique
characteristics. In this research, finding targeted kinds of image representations for
microscopic pathology classification is one of the essential problems that we need to
explore. Many traditional features have their distinctive superiorities and strong ro-
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bustness, e.g., LBP [15] has been proved to be an efficient texture operator, aimed at
describing the textural characteristics of target images. Pathology images, in a sense,
show texture-like structures and are intuitively more suitable for texture representa-
tions, whereas other possible proper representations should also be considered to avoid
the excessive deficiency of contributive information. Thus, different traditional features
are supposed to be taken into consideration.

The uncertainty of proper representation and the limitation of information that one
kind of feature contains both obstruct the further improvement of pathology image diag-
nosis. If several aspects of information can be utilized to diagnose at the same time and
complement each other, which is called multi-view learning, then the above problems
can be naturally solved. Multi-view learning, in recent years, is a rapidly developing re-
search direction, having great theoretical basis and enormous practical success [26] [20]
[30]. We consider performing multi-view maximum entropy discrimination (MVMED)
[21] to combine the contributive information of different representations, which can be
various features of the same pathology image. Consequently, we can utilize a kind of
typical feature that only emphasizes texture information to adapt the characteristics of
tissue images and combine the texture feature with other types of features to make up
for the limitation of information that it can contribute.

Despite traditional representations, deep neural network representations are also
worthy of experimenting with. In recent years, many kinds of CNN networks, e.g.,
AlexNet [11], OverFeat [17], achieve excellent accuracy in natural image classification
tasks, with large-scale datasets published in the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) Competition. These trained networks can well extract se-
mantic level features of natural images and show outstanding performance in many
other kinds of natural image classification tasks [11] [19] [22]. Although the pattern of
pathology images is far different from natural ones, the basic edge and figure informa-
tion, which the deep networks have already been trained to gain, can still be reused.
Also, the complexity and flexibility of CNN could provide the semantic information
extraction of microscopic pathology image. Until now, there is no work about the appli-
cation of deep learning in pNTs, and it was recently illustrated that it could be a future
direction for research [4].

We highlight the main contributions as follows. 1) We are the first to successfully
apply multi-view learning and deep learning technology on the microscopic neuroblas-
toma image diagnosis task, fully proving the effectiveness of the multi-view learning
and deep learning algorithm. 2) We observe that deep neural network representations
exceed traditional image representations, which illustrates the excellent potential of the
application of deep neural network in computer-aided pNTs diagnosis. 3) From the ex-
perimental results, we achieve much better diagnosis performance comparing with a
human senior resident, with both higher efficiency and accuracy.

2 Related Work

Pathological diagnosis is usually achieved by a professional human pathologist through
observing a stained specimen on the slide glass with a microscope. Recently, thanks
to the rapid progress in digitization technology of information, digital pathological im-
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ages, which are called whole slide image (WSI) [16], can be accumulated by utilizing a
scanner to capture the entire slide of the specimen. However, the tremendous amount of
information that one WSI contained (more than a billion pixels) and the high morphol-
ogy variability of one same disease both make it difficult to remember and diagnose
with the human brain. Digital image analysis based on machine learning algorithms
can assist pathologists to diagnose with lower misjudgment, regarding the detection
efficiency and accuracy.

In Aug. 2016, research from Stanford University School of Medicine illustrated that
computers could be trained to assess lung cancer pathological specimens with higher ac-
curacy compared with pathologists [28]. In 2017, scientists from Google, Google Brain
and Verily developed an artificial intelligence technique that can be used to diagnose
breast cancer [12]. They segmented a single WSI into tens of thousands of 128× 128-
pixel patches for training. Ultimately, this algorithm learned to identify pixels within a
single small patch that is labeled as a “tumor,” effectively distinguishing tumor tissues
from healthy tissues. Then in comparison with human pathologists, based on the sensi-
tivity (how many correct tumors were found) and the false positive (how many normal
tissues were diagnosed as tumors), the accuracy rate for human pathologists was 73.3%
and the algorithm is 88.5%. In addition, artificial intelligence has been successfully ap-
plied in intestinal polyposis, prostate cancer, and lymph node metastasis [8] [25] [10].
There are also some papers predicting that artificial intelligence will be embedded in
routine pathological workflows in the future, helping with repetitive tasks that require
quantitative evaluation and counting, and reducing the time spent by pathologists for
diagnosis. In this case, humans can undertake higher-level diagnosis and consultation
tasks, e.g., integrating information on molecular changes, pathological diagnosis, and
clinical manifestations, assisting clinical treatment planning and providing individual-
ized health management for patients [5]. Relevant work has been carried out mainly
in the diagnosis of adult cancer, such as the diagnosis of breast cancer, cervical cancer
screening. However, no reports have been reported on children’s tumors, and it is urgent
to carry out relative researches.

3 Traditional Representations and Deep Representations

As mentioned above, the pattern of histopathology image is visually closer to texture
rather than objects, and thus we consider choosing a classical kind of efficient texture
operator: local binary pattern (LBP) [15]. LBP labels the pixels of an image by thresh-
olding the neighborhood of each pixel and considers the result as a binary number, first
proposed by Ojala et al. in 1994 [14]. It describes the local texture construction of an
image, having many remarkable strengths such as rotational and gray-scale invariance.
A visualization example is shown in Fig. 2.

In spite of texture features, we also consider other traditional features. In this paper,
we choose dense scale-invariant feature transform (DSIFT) [27] descriptor, which is
often utilized in image matching or retrieval tasks. Average-DSIFT extracts SIFT [13]
features densely, with a specific step size, from each image on a specified grid. Fig.
2 displays the visualization result. SIFT features are detected through a staged filter-
ing approach, which guarantees scale invariance of the algorithm. It recognizes stable
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extreme points in the scaled space and then extracts invariant values of position, ro-
tation, and scale. Because image classification tasks require unified and fixed feature
structures, DSIFT features are applied to get the normalized input of models. Since the
dimension of the extracted feature is unnecessarily large, we pool it with the pooling
size of 19 × 19. Two different mainstream ways are applied: one way is max-pooling,
that is, keeping only the largest value (or the smallest) of the pool, and discarding the
others; the other way is average-pooling, that is, averaging all the values in the pool.
Max-pooling, in general, retains more texture information, while average-pooling re-
tains more background information [2].

(a) original (b) LBP (c) DSIFT

Fig. 2. An example for LBP and DSIFT visualization

For deep neural network presentation, we choose the AlexNet architecture [11],
which has won the ILSVRC12. This architecture consists of 5 convolutional layers,
some of which are followed by the max-pooling layers, and three fully-connected lay-
ers. Each convolution layer contains 96 to 384 convolution kernels, each with a size
range of 3 × 3 to 11 × 11. It was trained on the subset of the ImageNet dataset and
achieved the best accuracy. Inside the architecture, the original images are center cropped
and resized to 256 × 256. After these simple image preprocessing operations, they are
treated as input data for network training. Data augmentation and dropout [6] are also
utilized during the training process to avoid overfitting phenomenon. At the same time,
in order to further improve the classification accuracy, local response normalization
(LRN)[9] is also applied. We extract the representation output of the 7th layer in the
network, which is the topmost feature extraction layer beneath the final classification
layer inside the model and obtain features of 4096 dimensions. Also, we discard the
ReLU part of the 7th layer to avoid the data sparsity caused by it. Since there is only
one deep representation for MVMED, the classifier will be the degraded version MED
instead.

4 Multi-view Learning with Maximum Entropy Discrimination

Multi-view learning focuses on machine learning problems that can be characterized
by a variety of individual feature sets. Instead of using a single representation or sim-
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ply concatenating multiple representations into one representation, multi-view learning
explicitly uses different representations of the data and models the relationships be-
tween them or subsequent operations that they induce. The canonical correlation analy-
sis (CCA) [7] and the co-training algorithm [1] are two representative work for the early
study of multi-view learning. This type of learning mechanism comes from the fact that
real-world objects can often be represented by many different views or features in vari-
ous scenarios. For example, when understanding multimedia content, multimedia clips
can be described with both image and audio. In the task of pathological diagnosis of
cell or tissue images, the possible influence factors on the classification result are vari-
ous, e.g., texture information may be an important basis, but at the same time, the color
information that the doctor diagnoses as a part of the foundation cannot be ignored. The
information contained in one set of features is often targeted and not comprehensive
enough. In this problem, we need to obtain better accuracy by combining the advan-
tages of different features and multi-view learning provides a natural solution for this
purpose.

Fig. 3. The main architecture of MVMED

We consider using the MVMED algorithm [21] to combine multiple sets of features
extracted from the original image and the main architecture of the model is shown in
Fig. 3. In this algorithm, we have a multi-view dataset D = {x1t , x2t , yt}Nt=1 with N
examples, each of which has two views x1t and x2t . For simpler expression, we let v ∈
{1, 2} denote the index of views. For one pair {xvt , yt}, xvt represents the tth input from
view v, and yt ∈ {1,−1} denotes the corresponding label. Each view corresponds to a
discriminant function Lv(x

v|Θv) parameterized by a set of parameters Θv , satisfying
ytLv(x

v
t |Θv) ≥ γvt , t ∈ [N ], v ∈ [V ]. The discriminant functions from different views

are regularized so that they classify the training samples with the same confidence.
Margin consistency theory [20] is applied in this model, i.e., classification margins from
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different views are forced to be the same, namely, γt=̈γ1t = . . . = γVt , t ∈ [N ].
Considering the case that specified margins may be not reasonable for some examples,
the margins Θ = {Θv}v∈[V ] are as random variables, assigned with prior p0(γ) as in
the MED framework. The following optimization is solved for the posterior p(Θ,γ).

minp(Θ,γ) KL(p(Θ,γ) || p0(Θ,γ))

s.t.

{∫
p(Θ,γ)[ytLv(x

v
t |Θv)−γt]dΘvdγ≥0,

t ∈ [N ], v ∈ [V ].
(1)

Afterwards, p(Θ) =
∫
p(Θ,γ)dγ can be recovered, and the following formula can

be treated as decision rules

ŷ = sign

(
1

V

V∑
v=1

∫
p(Θ)Lv(x

v|Θv) dΘ

)
.

Also, the idea of sequential minimum optimization (SMO) [29] is adapted to the
dual problem for efficient training, which is inspired by the original SMO for the
standard SVM dual problem. This coordinate ascent algorithm decomposes the orig-
inal quadratic programming problem for solving N parameters into amounts of sub-
quadratic programming problems, each of which requires only two parameters to be
addressed, saving time cost and memory requirements. It is guaranteed to converge
to the global maximum because the optimization problem (1) is strictly convex and
smooth. Especially, if there is only one view, MVMED will degenerate to MED.

5 Experiments

In this section, we will first introduce the detailed information about our pathology
dataset and the specific partition configuration for training, validation, and testing.
Then, we observe and compare the experimental results of deep neural representations
and traditional representations through performing binary classification tasks, getting
the characteristics of two kinds of features respectively. Finally, we use the one-vs-rest
method to get the multi-class classification results and compare the results with human
doctor diagnosis.

5.1 Dataset Description

Between Jan. 1st, 2014 and Dec. 31st, 2015, 163 slides with a diagnosis of Periph-
eral neuroblastic tumors from 72 patients were seen at a third-level grade-A children’s
hospital, included ganglioneuroma (34 slides); ganglioneuroblastoma, intermixed (35
slides); and neuroblastoma (94 slides). Among the slides in the neuroblastoma cate-
gory, there were 11 UD subtypes, 52 PD subtypes, and 31 D subtypes. These specimens
were prepared according to the standard histopathologic protocol and subsequently dig-
itized using ScanScope T2 digitizer (Aperio, Leica, Germany) at 40× magnification.
The whole slide images are quite large, varying from 1 to 4.5 GB. To make the im-
age analysis more tractable, we snapshot each histology slide image into multiple non-
overlapping image tiles of the size 768 × 768 in pixels. All the snapshot images were
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reviewed histologically by a senior pediatric pathologist following the histological cri-
teria according to INPC and classified into UD, PD, D, and UN. We name this dataset
after neuroblastoma tumors (NBT).

(a) UN (b) UD (c) PD (d) D

Fig. 4. Example for UN and three subtypes of NB.

As briefly mentioned in Section 2, one WSI contains enormous amounts of infor-
mation and could consist of as many as tens of billions of pixels, which usually make it
hard to analyze. Thus, sampling local mini patches is a useful method so that feature ex-
traction and classification can be performed in each local patch. In this experiment, we
choose to sample smaller patches from WSIs with size 768× 768, since images of this
size can contain just enough information for doctors to judge it and also comfortable
for human vision.

Furthermore, since the real patient cases that can be collected are limited, and label-
ing requires a lot of labor, available training data that we can get are insufficient. In the
four classes, there are only 100 patches in the class UN and around 300 patches in the
other three classes, which are far not enough for general digital image analysis tasks.
Therefore, data augmentation is necessary for us to perform. To achieve the data bal-
ance between four classes, we sample patches with size 740×740 from original patches
to generate new samples to make the data amount of every class be 300 patches, and
these samples can be considered independent ones. Afterwards, for both traditional and
deep representations, we resize all the images to size 128×128, which is big enough for
our model to see the details of one patch. Then, we rotate each patch by 90 degrees for
four times, flip the original patch horizontally and rotate again. This makes the image
number in all classes increase from 300 to 2400. Also, we utilize the one-vs-rest method
in the experiment, the training data of the class with the smaller number are copied by
three times to avoid the unbalanced problem. The ratio of the partition in our dataset is
Training : V alidation : Testing = 4 : 1 : 1, i.e., the patch number of training data
is 1600, and either of the other two is 400 for each class. To compare with the human
doctor, 50 patches are sampled from the test sets of four classes, composing 200 test
patches in total. All the labels of the human test patches are hidden and utilized to be
compared with the diagnosis results of the human doctor.
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5.2 Binary Classification

To analyze the classification difficulty of each class pair, we list the random combina-
tions of two classes and treat each of them as one binary classification task respectively.
Since we have four classes (UN, UD, PD, and D) in our dataset, there are 6 = 4×3/div2
binary pairs, which are UN-UD, UN-PD, UN-D, UD-PD, UD-D, and PD-D. As men-
tioned in Section 3, we utilize LBP, average-DSIFT and max-DSIFT representations
as the traditional feature sets and AlexNet representation as the deep neural network
feature. In the experiment, we obtain four results of each binary classification pair for
traditional representations, which are gained from single LBP, single max-DSIFT or
average-DSIFT, the concatenation of the two feature sets, and the combination of them
with MVMED method separately. The experiment results are shown in Table 1.

Table 1. Results (%) of MVMED with traditional representations on NBT dataset.

Dataset
aver-DSIFT

LBP
aver-DSIFT LBP

aver-DSIFT
LBP

concat.

max-DSIFT
LBP

max-DSIFT
max-DSIFT

LBP
concat.

UN - UD 97.15±0.45 86.84±0.95 96.74±0.49 88.28±0.80 97.35±0.53 84.99±0.54 84.48±0.89
UN - PD 97.03±0.67 84.13±0.98 96.52±0.57 89.26±0.97 96.81±0.78 84.15±1.30 87.27±1.29
UN - D 93.62±0.80 84.58±1.16 89.75±1.25 86.27±0.58 93.52±0.62 84.06±0.90 86.04±1.09

UD - PD 74.00±1.17 60.61±1.46 76.71±0.94 68.21±1.16 75.03±0.98 60.80±1.04 64.99±1.40
UD - D 90.36±0.96 61.15±1.91 93.94±0.77 74.45±1.06 90.66±1.10 59.76±1.75 67.75±1.57
PD - D 83.36±1.19 60.90±1.06 87.90±1.16 69.68±1.13 83.54±1.81 59.48±1.45 62.04±1.46

From Table 1, where aver-DSIFT means average-DSIFT and concat. means con-
catenation for simplicity, we can clearly see that utilizing LBP feature achieves much
better performance than DSIFT features for every binary classification pair, which may
potentially confirm that pathology images tend to contain the texture-like structures.
Furthermore, it is not necessarily the case that one of max-DSIFT or average-DSIFT is
better than the other, which means there is no apparent difference between the feature
extraction effectiveness of the two. Also, if the two views can both well capture mean-
ingful information of the image and achieve nice accuracy, the combination of them
will perform better than either of them; if not so, the performance of the multi-view
will be relatively unstable. In addition, the performance of the naive concatenation of
two views cannot exceed either of them and is always between the two. At the same
time, no matter the single representation is LBP, average-DSIFT or max-DSIFT, when
it comes to the classification of UD-PD, the accuracy declines considerably. Thus, it
can be illustrated that the classification between UD and PD is tougher than any other
tasks, which also confirms the real diagnosis situations (the boundary between the two
differentiating types is relatively blurred and usually influenced by the subjectivity of
individual pathologists).
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Table 2. Results (%) of MVMED with deep neural network representations on NBT dataset.

View UN - UD UN - PD UN - D UD - PD UD - D PD - D

AlexNet 99.80±0.15 99.80±0.15 98.93±0.29 92.43±0.74 99.81±0.14 97.76±0.35

Table 2 shows the classification accuracy of the deep representation in binary clas-
sification tasks. High accuracies in all case prove this neural network representation
can efficiently extract useful features from pathology images. Although in the UD-PD
classification case, the accuracy is still inferior a little comparing with other cases, it
remains above 90%.

5.3 Multi-class Classification

Binary classification results can only convey us the concept the difficulty between ran-
dom pairs from the four classes and our final goal is to classify one pathology patch into
UN, UD, PD or D. We choose a typical multi-class classification method one-versus-
rest (OvR) [3] to make the prediction. An OvR strategy requires the training of a single
classifier for each category, samples of which are treated positive and all other sam-
ples are negative. This strategy requires the underlying classifier to generate real-valued
confidence values for its decisions, not just class labels. Since when multiple classes are
predicted to be a single sample, individual discrete class labels can cause ambiguities.
The corresponding classifier is namely: ŷ = argmax

k∈{1...K}
fk(x), where ŷ ∈ {1, ...,K} is

the predicted label for the sample x and fk is the confidence value of label k.
Table 3 shows the intermediate result of the classifier of each class. The deep rep-

resentation is still superior to traditional ones and achieves brilliant performance. For
traditional representations, the most cases illustrate that the multi-view learning helps
the intermediate classification accuracy increase, which may further improve the final
multi-class classification result when comparing with single views. Furthermore, the
lowest accuracy of class PD in most cases demonstrates that this type of NB tumor
is harder to recognize from other types. In contrast, the type UN is the easiest one to
recognize, whose reason might be that healthy tissue is easy to distinguish from tumor
tissue regarding morphology. Through the above OvR classifier, we obtain the final
multi-view classification results afterwards, and the accuracies are shown in Table 4.

Table 3. Intermediate results (%) for one-vs-rest method on NBT dataset.

View UN - UD PD D UD - UN PD D PD - UN UD D D - UN UD PD

average-DSIFT LBP 96.40±0.40 82.59±0.55 79.50±0.81 82.52±0.70
average-DSIFT 90.54±0.54 76.34±0.20 69.86±0.64 71.53±0.90

LBP 93.68±0.44 85.64±0.75 80.33±0.66 81.40±1.08
average-DSIFT LBP concat 92.17±0.41 78.65±0.46 77.06±0.91 76.36±0.57

max-DSIFT LBP 96.24±0.40 82.43±0.81 80.49±0.77 82.77±0.53
max-DSIFT 90.89±0.77 75.69±0.25 70.29±0.85 81.29±1.07

max-DSIFT LBP concat 92.09±0.50 77.10±0.39 74.04±0.62 73.35±0.99

AlexNet 99.70±0.25 96.13±0.41 93.88±0.56 98.41±0.35
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Table 4. Results (%) of multi-class classification via one-vs-rest method

View accuracy

AlexNet 94.25±0.75
average-DSIFT LBP 72.59±1.02

average-DSIFT 50.73±0.91
LBP 72.52±1.27

average-DSIFT LBP concat 60.97±1.14
max-DSIFT LBP 72.83±1.37

max-DSIFT 49.81±0.85
max-DSIFT LBP concat 55.92±0.55

From the final accuracies in Table 4, deep feature AlexNet achieves the best per-
formance overall, exceeding the best result in traditional features by up to around 22%.
We invite a doctor, who is a senior resident with eight years of experience from a gen-
eral hospital, to try to diagnose the human test dataset. After four months reviewing all
163 slides with his supervisor via multi-microscope, he had been familiar with INPC
and finished the image diagnosis himself. Four and a half hours were spent in total on
human diagnosing and the time spent by the algorithm can almost be ignored, which
confirms the efficiency of the model. The accuracy of AlexNet feature is far higher than
the diagnosis results (56.5%) of the doctor (96.5% for the UN-UD, PD, D case). Since
deep features show more excellent performance and robustness than traditional ones in
this experiment, it is reasonable to believe that they have more potentials worthy of ex-
ploring. Also, they may be able to achieve higher accuracy when combined with other
kinds deep features or traditional features through the end-to-end training, which will
be a future work for us to do. For traditional representations, the multi-view learning
combination of LBP and max-DSIFT features make the accuracy higher than either of
the two of them, which demonstrates the effectiveness of MVMED in terms of utilizing
the complementary information of different views.

6 Conclusion

Our work yields state-of-the-art sensitivity on the challenging task of diagnosing neu-
roblastoma tumors through digitally classifying pathology images with the multi-view
learning method. We make explorations in the multi-view learning and single-view
learning with traditional representations and deep representations on the NBT dataset.
The binary classification results with both kinds of features help us analyze the task dif-
ficulty of random two classes and some primary characteristics of MVMED. Then, the
intermediate and final results of OvR multi-class classification method demonstrates
the excellence of multi-view learning and deep learning, especially when compared
with the professional human diagnosis.

The number of the authoritative professional pathologists is nowadays far below the
social requirement, whereas machine learning methods can “learn” the abundant med-
ical human experience through the sample data labeled by these exports, achieving far
higher accuracy than human doctors. This kinds of computer-aided diagnosis methods
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can possibly assist young pathologists who lack years of work experience. The potential
shown by deep neural network representations provides our future work more possibil-
ities, e.g., the end-to-end multi-view deep learning may the direction that we will focus
on. Also, we will also attempt to apply pre-training through other hand-annotated tu-
mor datasets with similar image conditions and further extend the size of our pathology
dataset.
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